
6012 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 10, OCTOBER 2020

Low-Complexity Chase Decoding of
Reed-Solomon Codes Using Module

Jiongyue Xing , Graduate Student Member, IEEE, Li Chen , Senior Member, IEEE,

and Martin Bossert , Fellow, IEEE

Abstract— The interpolation based algebraic soft decoding
yields a high decoding performance for Reed-Solomon (RS) codes
with a polynomial-time complexity. Its computationally expensive
interpolation can be facilitated using the module structure. The
desired Gröbner basis can be achieved by reducing the basis of
a module. This paper proposes the low-complexity Chase (LCC)
decoding algorithm using this module basis reduction (BR)
interpolation technique, namely the LCC-BR algorithm. By iden-
tifying η unreliable symbols, 2η decoding test-vectors will be
formulated. The LCC-BR algorithm first constructs a common
basis which will be shared by the decoding of all test-vectors.
This eliminates the redundant computation in decoding each
test-vector, resulting in a lower decoding complexity and latency.
This paper further proposes the progressive LCC-BR algorithm
that decodes the test-vectors sequentially and terminates once
the maximum-likelihood decision decoding outcome is reached.
Exploiting the difference between the adjacent test-vectors, this
progressive decoding is realized without any additional memory
cost. Complexity analysis shows that the LCC-BR algorithm
yields a lower complexity and latency, especially for high rate
codes, which will be validated by the numerical results.

Index Terms— Basis reduction, low-complexity Chase
decoding, progressive decoding, Reed-Solomon codes.

I. INTRODUCTION

REED-SOLOMON (RS) codes are among the most pop-
ular error-correction codes in data communications and

storage systems. Currently, the Berlekamp-Massey (BM) algo-
rithm [1], [2] is employed in the practical systems due to its
effectiveness. It is a syndrome based decoding that delivers at
most one message candidate. Hence, it is referred as the unique
decoding. Other unique decoding algorithms include the
extended Euclidean algorithm [3] and the Welch-Berlekamp
algorithm [4]. They have the efficient running time but with the

Manuscript received November 2, 2019; revised April 4, 2020 and
June 28, 2020; accepted July 17, 2020. Date of publication July 27, 2020; date
of current version October 16, 2020. This work is sponsored by the National
Natural Science Foundation of China (NSFC) with project ID 61671486
and International Program for Ph.D. Candidates, Sun Yat-sen University.
This article was presented in part at the IEEE International Symposium
on Information Theory (ISIT), 2020. The associate editor coordinating the
review of this article and approving it for publication was P. Trifonov.
(Corresponding author: Li Chen.)

Jiongyue Xing and Li Chen are with the School of Electronics and
Information Technology, Sun Yat-sen University, Guangzhou 510006, China
(e-mail: xingjyue@mail2.sysu.edu.cn; chenli55@mail.sysu.edu.cn).

Martin Bossert is with the Institute of Communications Engineering, Ulm
University, 89081 Ulm, Germany (e-mail: martin.bossert@uni-ulm.de).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2020.3011991

error-correction capability limited by half of the code’s mini-
mum Hamming distance. Utilizing soft information, the gen-
eralized minimum-distance decoding (GMD) algorithm [5]
declares unreliable symbols as erasures and performs the
error-erasure decoding, while the Chase algorithm [6] mod-
ifies the unreliable symbols and constitutes multiple decoding
events. They both improve the error-correction performance.

In late 90s, breakthrough in correcting errors beyond the
half distance bound was made by Guruswami and Sudan [7].
They proposed an interpolation based algebraic hard-decision
decoding algorithm with a polynomial-time complexity. Later,
Kötter and Vardy [8] introduced the algebraic soft-decision
decoding algorithm by converting the symbol reliability
into the interpolation multiplicity. However, their complexity
remains high due to the construction of the interpolation
polynomial, which can be realized using Kötter’s iterative
polynomial construction algorithm [9]. Another interpolation
approach is based on the concept of Gröbner basis of a
module [10]. It first constructs a polynomial basis of a module
which satisfies all interpolation constraints, and then reduces
the basis into a Gröbner basis for finding the interpolation
polynomial. This technique is called basis reduction (BR).1

The construction of a module basis was introduced in [11].
In particular, Lee and O’Sullivan proposed the explicit basis
construction for the modules of the Guruswami-Sudan (GS)
and the Kötter-Vardy (KV) algorithms in [12] and [13], respec-
tively. There exist several efficient approaches [14]–[16] to
realize the basis reduction process. The interpolation step can
be transformed to a specific instance of M-Padé approximation
and tackled by the fast matrix computation [17]–[19]. Besides,
the interpolation problem can also be reformulated into a
system of linear equations and solved by the structured linear
algebra [20]–[22], among which the algorithm of [22] exhibits
the best complexity characteristics.

Several techniques have been proposed to reduce the alge-
braic decoding complexity, such as the re-encoding transform
[23]–[26] and the progressive interpolation [27]–[29]. The for-
mer approach was applied in Kötter’s interpolation [23], [24]

1In our earlier publications, we named this technique module minimization
(MM). However, during the revision, a more subtle consideration for the
decoding technique is reached, thanking to one of the reviewers. Note that
what being reduced is the basis of a module. Hence, “basis reduction (BR)”
will be a more appropriate name for this interpolation technique. But for the
sake of consistency, we will continue to use the acronym MM when we refer
to our earlier proposed algorithms. The audience should be aware that both
BR and MM mean the same interpolation technique.

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9238-7892
https://orcid.org/0000-0002-1725-1901
https://orcid.org/0000-0002-3827-9065


XING et al.: LCC DECODING OF RS CODES USING MODULE 6013

and the BR (or module minimization (MM) as we used to call)
interpolation [25], [26] for the KV algorithm, respectively. The
latter was introduced in [27]–[29] to adjust the decoding com-
putation to the level of corruption of the received information,
resulting in the decoding complexity being channel depen-
dent. By identifying η unreliable received symbols, the low-
complexity Chase (LCC) decoding algorithm [30] formulates
2η test-vectors and yields a competent decoding performance.
This formulation also enables Kötter’s interpolation to be
performed in a binary-tree expansion manner for all test-
vectors, resulting in a low-complexity feature. By further
arranging the test-vectors such that the adjacent test-vectors
only differ by one symbol, the backward-forward LCC
(BF-LCC) algorithm [31] offers a hardware friendly decod-
ing mechanism. Ordering the 2η test-vectors, the progressive
LCC algorithm [32] decodes the one that is more likely to
yield the intended message. It terminates once the intended
message is decoded [33], yielding a lower complexity when
the received information is less corruptive.

Recently, the MM based algebraic Chase decoding
(ACD-MM) algorithm [34] has been proposed. In contrast
to the LCC algorithm [30], it can perform parallel decoding
for each test-vector, lowering the decoding latency. However,
similarity among the test-vectors has not been fully utilized,
resulting in redundant computation. Addressing this problem,
this paper proposes the BR based LCC (LCC-BR) algorithm
for realizing the low-complexity and low-latency decoding of
RS codes. We will show that the BR interpolation can be
partitioned into the common basis construction and the indi-
vidual basis construction. The former is performed once and
its outcome will be shared by the individual basis construction
for decoding each test-vector, fully eliminating the redundant
computation of decoding all test-vectors. As the channel condi-
tion improves, e.g., the signal-to-noise ratio (SNR) increases,
the received soft information becomes less corruptive. Intu-
itively, fewer test-vectors need to be decoded in retrieving the
intended message. This paper further proposes the progres-
sive LCC-BR algorithm, which decodes the test-vectors in a
sequential manner and terminates once a maximum-likelihood
(ML) codeword is decoded. In comparison with the progres-
sive LCC algorithm [32], the proposal eliminates the need of
memorizing the intermediate decoding information. We will
reveal the low-complexity and low-latency features of the
LCC-BR algorithm. This analysis shows that the BR inter-
polation technique will be more effective for high rate codes.
Numerical results will show that the LCC-BR algorithm yields
a similar complexity as the LCC algorithm [30], but a much
lower decoding latency due to its parallel decoding feature.
Average complexity of the progressive LCC-BR algorithm is
further characterized, unveiling its channel dependent feature.
Simulation results will show the complexity and latency
advantages of the proposed algorithms over the existing
ones.

II. BACKGROUND KNOWLEDGE

This section presents the prerequisites of the paper,
including the RS encoding and the MM based GS
algorithm.

A. RS Encoding

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of size q,
and Fq[x] and Fq[x, y] denote the univariate and the bivariate
polynomial rings defined over Fq , respectively. For an (n, k)
RS code with length n = q − 1 and dimension k, message
symbols f0, f1, . . . , fk−1 constitute a message polynomial as

f(x) = f0 + f1x + · · ·+ fk−1x
k−1.

The corresponding codeword c = (c0, c1, . . . , cn−1) can be
generated by

c = (f(α0), f(α1), . . . , f(αn−1)),

where α0, α1, . . . , αn−1 are the n distinct nonzero elements
of Fq.

B. The MM Based GS Algorithm

Let ω = (ω0, ω1, . . . , ωn−1) ∈ F
n
q denote the received

word. The Hamming distance between c and ω is dH(c, ω) =
|{j | cj �= ωj , ∀j}|. Given a polynomial Q(x, y) =∑

a,b Qabx
ayb ∈ Fq[x, y] and a nonnegative integer pair (κ, ι),

the (κ, ι)-Hasse derivative evaluation at one point (αj , ωj) is
defined as [35]

D(αj ,ωj)
κ,ι (Q(x, y)) =

∑
a≥κ,b≥ι

(
a

κ

)(
b

ι

)
Qabα

a−κ
j ωb−ι

j .

If D
(αj ,ωj)
κ,ι (Q(x, y)) = 0, ∀κ + ι < m, Q(x, y) interpolates

the point (αj , ωj) with a multiplicity m. The GS algorithm [7]
first constructs an interpolation polynomial Q(x, y) that passes
through the n points (α0, ω0), (α1, ω1), . . . , (αn−1, ωn−1)
with a multiplicity m. The message polynomial f(x) can be
recovered by finding its y-roots, i.e., Q(x, f(x)) = 0 [36].
Hence, the maximum decoding output list size is determined
by its y-degree, i.e., degy Q. Let l = degy Q denote the
decoding parameter. Note that m ≤ l.

Definition I: Given a bivariate monomial xayb, its (μ, ν)-
weighted degree is degμ,ν xayb = μa + νb. Consequently,
the (μ, ν)-reverse lexicographic (revlex) order is defined as fol-
lows. Given xa1yb1 and xa2yb2 , it is claimed xa1yb1 < xa2yb2 ,
if degμ,ν xa1yb1 < degμ,ν xa2yb2 , or degμ,ν xa1yb1 =
degμ,ν xa2yb2 and b1 < b2.

Definition II: Given Q(x, y) =
∑

a,b Qabx
ayb ∈ Fq[x, y],

if xa′
yb′(Qa′b′ �= 0) is the leading monomial (LM), the (μ, ν)-

weighted degree of Q is degμ,ν Q = degμ,ν xa′
yb′ . Given

two polynomials Q1 and Q2 with LMμ,ν(Q1) = xa′
1yb′1

and LMμ,ν(Q2) = xa′
2yb′2 , respectively, Q1 < Q2 if

LMμ,ν(Q1) < LMμ,ν(Q2).
Consequently, the GS decoding theorem can be introduced.
Theorem 1 [7]: For an (n, k) RS code, let Q ∈ Fq[x, y]

denote a polynomial that interpolates the n points with a
multiplicity m. If m(n − dH(c, ω)) > deg1,k−1 Q(x, y),
Q(x, f(x)) = 0.

The interpolation polynomial Q can be determined by the
MM approach [12]. It first constructs a basis of a mod-
ule, which will then be reduced into a Gröbner basis that
contains Q. The following defines a module M.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



6014 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 10, OCTOBER 2020

Definition III: The module M is the space of all poly-
nomials over Fq[x, y] that interpolate the n points with a
multiplicity m and have a maximum y-degree l.

Note thatM is a free Fq[x]-module of rank l [12]. In order
to generate M, its explicit basis needs to be constructed.
Firstly, two univariate polynomials, namely the module seeds,
are introduced as

G(x) =
n−1∏
j=0

(x− αj) (1)

and

R(x) =
n−1∑
j=0

ωjTj(x), (2)

where

Tj(x) =
n−1∏

j′=0,j′ �=j

x− αj′

αj − αj′

is the Lagrange basis polynomial. It satisfies Tj(αj) = 1
and Tj(αj′ ) = 0, ∀j′ �= j. As a result, R(αj) = ωj, ∀j.
With a multiplicity m and a decoding output list size l, M
can be generated as an Fq[x]-module by the following l + 1
polynomials [12]

Pt(x, y) = G(x)m−t(y −R(x))t, if 0 ≤ t ≤ m, (3)

Pt(x, y) = yt−m(y −R(x))m, if m < t ≤ l. (4)

Let B = {P0(x, y), P1(x, y), . . . , Pl(x, y)} define a polyno-
mial set. Since Pt(αj , ωj) = 0, ∀(t, j) and the total expo-
nent of G(x) and y − R(x) is at least m, each Pt(x, y)
interpolates the n points with a multiplicity m. Furthermore,
degy Pt(x, y) = t ≤ l. Therefore, B spans the module M,
resulting in a basis of M.

Lemma 2 [12]: Given a polynomial Q(x, y) ∈ M, it can
be presented as an Fq[x]-linear combination of Pt(x, y),
i.e., Q(x, y) =

∑l
t=0 pt(x) · Pt(x, y), where pt(x) ∈ Fq[x].

The basis B will be reduced into a Gröbner basis, in which
the minimum candidate is chosen as the interpolation poly-
nomial Q(x, y). The following Lemma describes a simple
criterion to validate a Gröbner basis of a module.

Lemma 3 [12]: Assume that G = {gt ∈ Fq[x, y], 0 ≤ t ≤ l}
is a basis of M. If degy LMμ,ν(gt) �= degy LMμ,ν(gt′), ∀t �=
t′, G is a Gröbner basis of M.

The basis reduction is to perform Fq[x]-linear combi-
nations on the polynomials Pt(x, y) until the y-degree of
all LMμ,ν(Pt) are different. There exist several approaches
for the basis reduction, with an asymptotic complex-
ity of O(ml4n2) [14], O(ml4n log2 n log log n) [15] and
O(m2l2n log3 n log log n) [16], respectively. Despite the lat-
ter two approaches employ fast multiplication, they become
effective only if the polynomial degrees are sufficiently large.
Since this work considers moderate also practical size RS
codes, the polynomial degrees have not reached a level that
can be facilitated. In fact, the re-encoding transform fur-
ther reduces the polynomial degrees into only tens. There-
fore, in this work, we apply the Mulders-Storjohann (MS)
algorithm [14].

III. THE ACD-MM ALGORITHM

This section reviews the ACD-MM algorithm [34], which
can be regarded as a predecessor of our proposals. They adopt
the same test-vectors formulation and re-encoding transform.

A. Test-Vectors Formulation

Assume codeword c is transmitted through a memoryless
channel and r = (r0, r1, . . . , rn−1) ∈ R

n is the received
symbol vector. A reliability matrix Π ∈ R

q×n can be obtained,
whose entries are πij = Pr[cj = σi | rj ],2 where 0 ≤ i ≤
q − 1, 0 ≤ j ≤ n − 1. Let iI

j = arg maxi{πij} and iII
j =

argmaxi,i�=iI
j
{πij} denote the row indices of the largest and

the second largest entries of column j, respectively. The two
most likely decisions for cj are rI

j = σiI
j

and rII
j = σiII

j
. Define

the symbol-wise reliability metric as

γj =
πiI

jj

πiII
jj

,

where γj ∈ (1,∞). The decision is less reliable if γj is
smaller, and vice versa. Sorting γj in a nonincreasing order
yields a new symbol index sequence j0, j1, . . . , jn−1 that indi-
cates γj0 ≥ γj1 ≥ · · · ≥ γjn−1 . Let Θ = {j0, j1, . . . , jn−η−1}
denote the index set of the n − η most reliable symbols. Its
complementary set is Θc = {jn−η, jn−η+1, . . . , jn−1}. Since
there are two decisions for each of the η unreliable symbols, 2η

test-vectors will be formulated. Consequently, all test-vectors
can be written as

ru = (r(u)
j0

, r
(u)
j1

, . . . , r
(u)
jn−η−1

, r
(u)
jn−η

, . . . , r
(u)
jn−1

), (5)

where u = 1, 2, . . . , 2η is the test-vector index and

r
(u)
j =

{
rI
j , if j ∈ Θ,

rI
j or rII

j , if j ∈ Θc.
(6)

Note that the reliability metric can also be defined as either
the smallest bit-wise channel observation or the entropy of
each received symbol. Our research shows that compared
with the above symbol-wise metric, identifying the unreliable
symbols using the bit-wise reliability results in the same
decoding performance, while using the entropy metric shows a
slight performance degradation. One may also consider more
decisions for cj . This will gain performance but with a much
higher decoding complexity. Our research also shows that
initiating more unreliable symbols outweighs making more
decisions for fewer unreliable positions. For the proposed
Chase decoding style, it is important to identify the erroneous
positions and classify them unreliable so that the errors can
be removed by alternating the decisions. Finding a better way
to define the unreliable symbols remains to be our pursuit.

B. Re-Encoding Transform

Re-encoding further transforms the test-vectors [23]. Let
η ≤ n−k to ensure all test-vectors would share at least k com-
mon symbols rI

j0 , r
I
j1 , . . . , r

I
jk−1

. Let Ψ = {j0, j1, . . . , jk−1}
denote the index set of these k most reliable symbols. Hence,

2It is assumed Pr[cj = σi] = 1
q
,∀(i, j).

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: LCC DECODING OF RS CODES USING MODULE 6015

Ψc = {jk, jk+1, . . . , jn−1}. Let hj = rI
j , ∀j ∈ Ψ, the code-

word h = (h0, h1, . . . , hn−1) can be generated by Forney’s
erasure-only decoding algorithm [37]. All test-vectors ru are
then transformed by

ru �→ zu : z
(u)
j = r

(u)
j − hj , ∀j. (7)

Consequently, the transformed test-vectors become

zu = (0, 0, . . . , 0, z
(u)
jk

, . . . , z
(u)
jn−1

). (8)

C. Basis Construction and Reduction

For all test-vectors zu, the polynomial (2) is redefined as

Ru(x) =
n−1∑
j=0

z
(u)
j Tj(x). (9)

Since z
(u)
j = 0, ∀j ∈ Ψ,

V (x) =
∏
j∈Ψ

(x− αj) (10)

becomes the GCD for both G(x) of (1) and the above Ru(x).
Therefore, two new module seeds are defined as [34]

G̃(x) =
G(x)
V (x)

=
∏

j∈Ψc

(x− αj) (11)

and

R̃u(x) =
Ru(x)
V (x)

=
∑
j∈Ψc

z
(u)
j T̃j(x), (12)

where

T̃j(x) =

∏
j′∈Ψc,j′ �=j(x− αj′ )∏n−1
j′=0,j′ �=j(αj − αj′ )

.

Now the isomorphic module M̃u for each test-vector zu can
be generated by

P̃t(x, y) = G̃(x)m−t(y − R̃u(x))t, if 0 ≤ t ≤ m, (13)

P̃t(x, y) = (yV (x))t−m(y − R̃u(x))m, if m < t ≤ l.

(14)

They form a basis B̃u of M̃u, which will be reduced into
a Gröbner basis for finding the interpolation polynomial
Qu(x, y) and recovering the message [34].

IV. THE LCC-BR ALGORITHM

This section introduces the LCC-BR algorithm, in which
we set m = l = 1. Under this configuration, the MS
algorithm is equivalent to the conventional extended Euclidean
algorithm [3], which will be shown in Remark 1. For high
rate RS codes, increasing m (or l) cannot improve the
error-correction capability of each Chase decoding event.
Since high rate codes are more preferable in practice, set-
ting m = l = 1 does not limit the proposed algorithms’
error-correction capability in action. The LCC-BR algorithm
consists of test-vectors formulation, re-encoding transform,
common basis construction and individual basis construction.
In particular, the first two steps are the same as the ACD-MM
algorithm [34]. Hence, we begin with introducing the common
basis construction.

Fig. 1. Index sets of the LCC-BR algorithm.

A. Common Basis Construction

From (6), it can be observed that the common interpolation
points of the 2η test-vectors are (αj , r

I
j), ∀j ∈ Θ. After the

re-encoding transform, they become (αj , z
I
j), where zI

j =
rI
j − hj . Note that zI

j = 0, ∀j ∈ Ψ. Let Ψ′ = Ψc \
Θc = {jk, jk+1, . . . , jn−η−1}. For convenience, the above
mentioned index sets are illustrated in Fig. 1. We define a
common test-vector

z0 = (z(0)
0 , z

(0)
1 , . . . , z

(0)
n−1), (15)

where z
(0)
j = zI

j , ∀j ∈ Ψ′ and z
(0)
j = 0, ∀j ∈ Ψ ∪ Θc. Since

m = l = 1, the module generators (13) and (14) defined by
z0 can be simplified into

P̃0,0(x, y) = G̃(x), (16)

P̃0,1(x, y) = y − R̃0(x), (17)

where

R̃0(x) =
∑
j∈Ψc

z
(0)
j T̃j(x) =

∑
j∈Ψ′

z
(0)
j T̃j(x).

The above two polynomials generate an isomorphic module
M̃0 for the points (αj , z

(0)
j ), ∀j ∈ Ψ′, forming the common

basis B̃0. The MS algorithm [14] that performs Fq[x]-linear
combination will reduce B̃0 into a Gröbner basis B̃′

0, where
its entries are denoted as P̃ ′

0,0(x, y) and P̃ ′
0,1(x, y). Based on

Lemma 2, they can be written as

P̃ ′
0,0(x, y) = p00(x)G̃(x) + p01(x)(y − R̃0(x)), (18)

P̃ ′
0,1(x, y) = p10(x)G̃(x) + p11(x)(y − R̃0(x)), (19)

where p00(x), p01(x), p10(x), p11(x) ∈ Fq[x]. With the
re-encoding transform, polynomials are organized by the
(1,−1)-revlex order [24]. Based on Lemma 3, we have
degy LM1,−1(P̃ ′

0,0(x, y)) �= degy LM1,−1(P̃ ′
0,1(x, y)). These

two polynomials will be utilized by the following 2η individual
basis constructions.

Remark 1: When m = l = 1, the MS algorithm is
equivalent to the extended Euclidean algorithm [3]. Assume
that

g0(x, y) = g
(0)
0 (x) + g

(1)
0 (x)y

g1(x, y) = g
(0)
1 (x) + g

(1)
1 (x)y

generate the moduleM. Further assume that g0(x, y) has the
leading term (LT) in g

(0)
0 (x) and deg g

(0)
0 (x) > deg g

(0)
1 (x).

If g1(x, y) also has the leading term in g
(0)
1 (x), then

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



6016 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 10, OCTOBER 2020

B = {g0(x, y), g1(x, y)} is not a Gröbner basis. For the MS
algorithm [14], it will perform

g0(x, y)← g0(x, y)− LT(g(0)
0 (x))

LT(g(0)
1 (x))

g1(x, y)

to update g0(x, y). This update is equivalent to calculating

g
(0)
0 (x) = q̃(x)g(0)

1 (x) + r̃(x),

where deg r̃(x) < deg g
(0)
1 (x), and updating g0(x, y) by

g0(x, y) ← g0(x, y)− q̃(x)g1(x, y)

= r̃(x) + (g(1)
0 (x) − q̃(x)g(1)

1 (x))y,

i.e., g
(0)
0 (x) ← r̃(x) and g

(1)
0 (x) ← (g(1)

0 (x) − q̃(x)g(1)
1 (x)).

Note that r̃(x) and q̃(x) can be calculated by the extended
Euclidean algorithm [3]. Therefore, the MS algorithm is
equivalent to the extended Euclidean algorithm in solving the
basis reduction problem of our work. Their complexity would
also be the same if the calculation of r̃(x) and q̃(x) uses the
naive polynomial division. When their degrees are sufficiently
large, a fast extended Euclidean algorithm based on the divide-
and-conquer concept can be used to facilitate the process [38].

B. Individual Basis Construction

Based on B̃′
0, the BR interpolation will be completed by

performing the individual basis construction and reduction for
each transformed test-vector zu. Since z

(u)
j = z

(0)
j , ∀j ∈ Ψ′,

and Ψc = Ψ′ ∪Θc, the polynomial (12) can be rewritten as

R̃u(x) = R̃0(x) + Υ̃u(x),

where

Υ̃u(x) =
∑
j∈Θc

z
(u)
j T̃j(x).

Therefore, based on (18) and (19), for each test-vector zu,
we have

P̃u,t(x, y) = pt0(x)G̃(x) + pt1(x)(y − R̃u(x))
= pt0(x)G̃(x) + pt1(x)(y − R̃0(x) − Υ̃u(x))
= P̃ ′

0,t(x, y)− pt1(x)Υ̃u(x), (20)

where t = 0, 1. Polynomials P̃u,0(x, y) and P̃u,1(x, y) form
the basis B̃u. It can be seen that all B̃u are constructed
using the previously reduced common basis B̃′

0, eliminating
the redundant computation in decoding all test-vectors. After-
wards, the MS algorithm will reduce each basis B̃u into its
Gröbner basis B̃′

u which contains P̃ ′
u,0(x, y) and P̃ ′

u,1(x, y).
Determine Q̃u(x, y) by

Q̃u(x, y) = min{P̃ ′
u,0(x, y), P̃ ′

u,1(x, y)}. (21)

Since Q̃u(x, y) = Q̃
(0)
u (x) + Q̃

(1)
u (x)y, it can be restored into

the interpolation polynomial Qu(x, y) by

Qu(x, y) = V (x)Q̃(0)
u (x) + Q̃(1)

u (x)y. (22)

Note that Qu(x, y) interpolates the points (α0, z
(u)
0 ),

(α1, z
(u)
1 ), . . . , (αn−1, z

(u)
n−1) with a multiplicity of one. If the

decoding estimation f̃u(x) satisfies Qu(x, f̃u(x)) = 0, i.e.,

Qu(x, f̃u(x)) = V (x)Q̃(0)
u (x) + Q̃(1)

u (x)f̃u(x) = 0, (23)

Algorithm 1 The LCC-BR Algorithm
Input: Π, η;
Output: f̂u(x);

1: Formulate 2η test-vectors ru as in (5);
2: Perform the re-encoding transform to yield zu as in (8);
3: Construct B̃0 as in (16) (17) and reduce it into B̃′

0;
4: For each transformed test-vector zu do
5: Construct B̃u as in (20);
6: Perform the MS algorithm to reduce B̃u into B̃′

u;
7: Determine Qu(x, y) as in (21) (22);
8: Decode f̃u(x) as in (24) and estimate f̂u(x);
9: End for

f̃u(x) can be determined by

f̃u(x) = −V (x)Q̃(0)
u (x)

Q̃
(1)
u (x)

, (24)

and the estimated codeword is ĉu = (ĉ(u)
0 , ĉ

(u)
1 , . . . , ĉ

(u)
n−1),

where ĉ
(u)
j = f̃u(αj) + hj , ∀j. Its corresponding message

polynomial f̂u(x) can be determined by the following discrete
Fourier transform (DFT) [39]. By presenting ĉu as ĉu(x) =
ĉ
(u)
0 + ĉ

(u)
1 x+ · · ·+ ĉ

(u)
n−1x

n−1, the coefficients of the estimated

message polynomial f̂u(x) = f̂
(u)
0 + f̂

(u)
1 x + · · ·+ f̂

(u)
n−1x

n−1

can be determined by f̂
(u)
j = n−1 · ĉu(α−1

j ), ∀j. Note that

n−1 = 1 in the binary extension field and f̂
(u)
j = 0

for k ≤ j ≤ n − 1. If V (x)Q̃(0)
u (x) cannot be divided

by Q̃
(1)
u (x), the decoding of the test-vector zu fails. After

decoding all 2η test-vectors, the message f̂u(x) whose corre-
sponding codeword ĉu yields the minimum Euclidean distance
(after modulation) to the received symbol vector r will be
chosen as the output. The LCC-BR algorithm is summarized
in Algorithm 1.

Unlike the LCC algorithm [30], the LCC-BR algorithm can
perform the decoding for each test-vector in parallel, offering a
low decoding latency. Furthermore, Fig. 2 shows the difference
between the ACD-MM [34] and the LCC-BR algorithms.
It can be seen that the proposed LCC-BR algorithm improves
upon the existing ACD-MM algorithm by utilizing the sim-
ilarity among all 2η test-vectors to eliminate the redundant
computation in the basis construction and reduction.

V. THE PROGRESSIVE LCC-BR ALGORITHM

The above description shows the LCC-BR algorithm needs
to decode 2η test-vectors. However, if the channel condition
improves, the received information becomes less corruptive.
It will not be necessary to decode all test-vectors since
the intended message can be decoded by processing fewer
test-vectors. Therefore, we design the progressive LCC-BR
algorithm, in which the test-vectors are decoded in a sequential
manner. Once the intended message is decoded, the decoding
terminates. During the progressive decoding, the BR inter-
polation results of the current test-vector is utilized by the
following test-vector, saving the decoding computation. Unlike
the progressive LCC algorithm [32], the proposed algorithm

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: LCC DECODING OF RS CODES USING MODULE 6017

Fig. 2. Diagram of the ACD-MM and the LCC-BR algorithms.

does not have additional memory requirement. The progressive
decoding will first sort the test-vectors such that the one with
a higher potential of yielding the intended message will be
decoded earlier [32].

A. Ordering of Test-Vectors

Given a test-vector ru = (r(u)
0 , r

(u)
1 , . . . , r

(u)
n−1), its reliabil-

ity can be defined as [32]

Ωu =
n−1∏
j=0

π
i
(u)
j j

,

where i
(u)
j = index{σi | σi = r

(u)
j }. A test-vector with a

larger Ωu value is regarded to be more reliable and it should
be decoded earlier. Since all test-vectors share the common
symbols rI

j , where j ∈ Θ, the reliability function can be further
simplified into

Ω̃u =
∏

j∈Θc

π
i
(u)
j j

. (25)

By sorting the reliability of 2η test-vectors in a descending
order, a refreshed index sequence u1, u2, . . . , u2η can be
yielded, which indicates Ω̃u1 > Ω̃u2 > · · · > Ω̃u2η . Note
that the first decoded test-vector is the hard-decision received
word, i.e., ru1

= ω. The progressive algorithm will decode
the test-vectors sequentially until a codeword that satisfies the
ML criterion [33] is found. It has been shown in [32] that
such an ordering enables the decoding to be terminated earlier,
minimizing the message recovery complexity.

B. The Algorithm

Let Λuτ = {j | z
(uτ )
j �= z

(uτ+1)
j , j ∈ Θc} denote the

index set of the different symbols between zuτ
and zuτ+1

,

where τ = 1, 2, . . . , 2η. Note that Λu2η = ∅. Since z
(uτ )
j −

z
(uτ+1)
j = (r(uτ )

j − hj) − (r(uτ+1)
j − hj) = r

(uτ )
j − r

(uτ+1)
j ,

∀j, z
(uτ )
j �= z

(uτ+1)
j implies r

(uτ )
j �= r

(uτ+1)
j . Therefore, Λuτ

can also be denoted as

Λuτ = {j | r(uτ )
j �= r

(uτ+1)
j , j ∈ Θc}. (26)

The progressive LCC-BR algorithm is described as follows.
Unlike the LCC-BR algorithm, the common basis does not
need to be constructed. At the beginning, a basis B̃u1 for the
test-vector zu1

will be constructed by

P̃u1,0(x, y) = G̃(x), (27)

P̃u1,1(x, y) = y − R̃u1(x). (28)

The MS algorithm will reduce B̃u1 into a Gröbner basis B̃′
u1

which contains the polynomials P̃ ′
u1,0(x, y) and P̃ ′

u1,1(x, y).
The minimum one will be chosen as Q̃u1(x, y). The estimated
message f̂u1(x) can be determined as in (24) and the DFT.
If its corresponding codeword ĉu1

satisfies the ML criterion
[33], the decoding terminates and outputs f̂u1(x). Otherwise,
the decoding continues to decode the test-vector zu2

. Based
on Lemma 2, the polynomials P̃ ′

u1,0(x, y) and P̃ ′
u1,1(x, y) can

be written as

P̃ ′
u1,0(x, y) = pu1,00(x)G̃(x) + pu1,01(x)(y − R̃u1(x)),

P̃ ′
u1,1(x, y) = pu1,10(x)G̃(x) + pu1,11(x)(y − R̃u1(x)),

where pu1,00(x), pu1,01(x), pu1,10(x), pu1,11(x) ∈ Fq[x]. The
difference between zu1

and zu2
is used to formulate the

polynomial R̃u2(x) as

R̃u2(x) = R̃u1(x) + Wu1(x),

where Wu1(x) =
∑

j∈Λu1
(z(u2)

j − z
(u1)
j )T̃j(x) =∑

j∈Λu1
(r(u2)

j − r
(u1)
j )T̃j(x). A basis B̃u2 for the test-vector

zu2
can be constructed by

P̃u2,t(x, y)
= pu1,t0(x)G̃(x) + pu1,t1(x)(y − R̃u2(x))
= pu1,t0(x)G̃(x) + pu1,t1(x)(y − R̃u1(x) −Wu1(x))
= P̃ ′

u1,t(x, y)− pu1,t1(x)Wu1 (x),

where t = 0, 1. It can be seen that the polynomials P̃u2,0(x, y)
and P̃u2,1(x, y) are constructed based on P̃ ′

u1,0(x, y) and
P̃ ′

u1,1(x, y). Moreover, the re-encoding transform should only
be performed for the test-vector ru1

. The basis of other
test-vectors does not rely on their transform as Wu1(x) indi-
cates. The MS algorithm reduces B̃u2 into a Gröbner basis
B̃′

u2
in which the minimum candidate will be restored into the

interpolation polynomial Qu2(x, y).
In general, if the ML codeword cannot be retrieved from

decoding the test-vector zuτ−1
(τ ≥ 2), the next test-vector

zuτ
needs to be decoded. Based on the above derivation,

a basis B̃uτ for zuτ
can be constructed by

P̃uτ ,0(x, y) = P̃ ′
uτ−1,0(x, y)− puτ−1,01(x)Wuτ−1 (x), (29)

P̃uτ ,1(x, y) = P̃ ′
uτ−1,1(x, y)− puτ−1,11(x)Wuτ−1 (x), (30)

where P̃ ′
uτ−1,0(x, y), P̃ ′

uτ−1,1(x, y), puτ−1,01(x) and
puτ−1,11(x) are obtained from the decoding of zuτ−1

,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



6018 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 10, OCTOBER 2020

and

Wuτ−1(x) =
∑

j∈Λuτ−1

(z(uτ )
j − z

(uτ−1)
j )T̃j(x)

=
∑

j∈Λuτ−1

(r(uτ )
j − r

(uτ−1)
j )T̃j(x). (31)

The MS algorithm will reduce B̃uτ into its Gröbner basis
B̃′

uτ
, in which the minimum candidate will be restored as

in (22) and its y-root is determined as in (24). If it produces
a codeword ĉuτ

that satisfies the ML criterion, the decoding
will terminate and output the estimated message f̂uτ (x).
Otherwise, the decoding continues to decode the test-vector
zuτ+1

. If the decoding of all 2η test-vectors cannot produce
an ML codeword, the decoding terminates with a failure.

Remark 2: Equations (28) and (31) reveal that the
re-encoding transform only needs to be performed once on
the test-vector ru1

.
Remark 3: It can be observed from (29) and (30) that the

progressive LCC-BR algorithm does not need to memorize the
intermediate decoding information, eliminating the memory
cost of the original progressive algorithm [32].

VI. DECODING COMPLEXITY AND LATENCY

This section analyzes the decoding complexity and latency
of the proposed algorithms. They are measured as the number
of finite field multiplications3 and the running time required
to decode a codeword, respectively.

A. The LCC-BR Algorithm

Based on the above descriptions, the LCC-BR algorithm
includes re-encoding transform, common basis construction,
individual basis construction and root-finding. Their complex-
ity are denoted as Cre, Ccom, Cind and Crf, respectively. They
will be characterized so that an overview of the algorithms
complexity can be obtained.

Lemma 4 [30]: Complexity of the re-encoding transform is
Cre = 4(n− k)2.

Lemma 5: Complexity of the common basis construction is
Ccom = 1

2 (n− k)2(n− k + 7).
Proof: The common basis construction complexity is

measured by the number of multiplications in computing
the generators (16) and (17), and the Gröbner basis B′

0.
As |Ψc| = n−k, computing G̃(x) requires 1

2 (n−k)(n−k+1)
multiplications. Note that there are n − k polynomials T̃j(x)
and computing each one requires 1

2 (n − k)(n − k − 1)
multiplications. Hence, the multiplications in computing all
T̃j(x) are 1

2 (n − k)2(n − k − 1). Since |Ψ′| = n − k − η

and deg T̃j(x) = n−k−1, further computing R̃0(x) requires
(n−k−1)(n−k−η) multiplications. The MS algorithm needs
at most (n−k+1) Fq[x]-linear combinations to reduce B0 into
B′

0 [28]. Since deg G̃(x) = n−k and deg R̃0(x) = n−k−1,
the common basis reduction requires at most 2(n−k)(n−k+1)
multiplications. With η ≤ n − k, the above analysis shows

3Finite field multiplications dominate the computation in the decoding.

TABLE I

THE LCC-BR COMPLEXITY IN DECODING VARIOUS RS CODES

that complexity of the common basis construction can be
approximated to Ccom = 1

2 (n− k)2(n− k + 7).
Note that with the re-encoding transform, the index set

Ψc varies in each decoding event. Therefore, G̃(x) and all
T̃j(x) cannot be computed offline. The above two steps of
re-encoding transform and common basis construction are
performed once, producing an outcome shared by all 2η test-
vectors.

Lemma 6: Complexity of the individual basis construction
is Cind = 2η · 5(n− k)2.

Proof: The individual basis construction complexity is
determined by the complexity in computing the generators (20)
and the Gröbner basis B′

u. Since |Θc| = η, computing Υ̃u(x)
requires η(n − k − 1) multiplications. Since deg p01(x) ≤
1
2 (n−k), deg p11(x) ≤ 1

2 (n−k) and deg Υ̃u(x) = n−k−1,
computing the polynomials P̃u,0(x, y) and P̃u,1(x, y) requires
at most 1

2 (n−k)(n−k−1) ·2 = (n−k)(n−k−1) multipli-
cations. Furthermore, since degx P̃u,0(x, y) ≤ 3

2 (n − k) and
degx P̃u,1(x, y) ≤ 3

2 (n − k), the individual basis reduction
requires at most 3(n− k +1)(n− k) multiplications. With 2η

test-vectors, complexity of the individual basis construction
can be approximated to Cind = 2η · 5(n− k)2.

Lemma 7: Complexity of the root-finding is Crf = 2η ·
k(n− k).

Proof: The root-finding complexity is determined by the
complexity in computing (24). Since deg V (x) = k and
deg Q̃

(0)
u (x) ≤ 1

2 (n − k), computing V (x)Q̃(0)
u (x) requires

1
2k(n−k) multiplications. Since deg V (x)Q̃(0)

u (x) ≤ 1
2 (n+k),

the division between V (x)Q̃(0)
u (x) and Q̃

(1)
u (x) requires at

most k(1
2 (n − k) + 1) multiplications. Therefore, complex-

ity of the root-finding can be approximated to Crf = 2η ·
k(n− k).

The above complexity characterizations show that the over-
all complexity of the LCC-BR algorithm is CLCC-BR = Cre +
Ccom + Cind + Crf. When η is sufficiently large, the LCC-BR
complexity is dominated by the individual basis construction
and the root-finding. Asymptotically, it is O(2η(n−k)2). Oth-
erwise, it will be dominated by the common basis construction
with an asymptotic characterization of O((n − k)3). These
asymptotic characterizations show that the LCC-BR algorithm
will be more effective for high rate codes. Table I shows
our numerical results in decoding various RS codes. They
were obtained by simulating the LCC-BR algorithm, during
which the average number of finite field multiplications in
decoding a codeword is measured. We verify our analysis by
seeing whether the simulation results yield the same magnitude
as the analytical expressions. For example, when η = 6,
the analytical complexity is CLCC-BR = 4.15 × 105 for the
(63, 31) RS code, while the simulation shows 2.44 × 105.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: LCC DECODING OF RS CODES USING MODULE 6019

TABLE II

COMPLEXITY COMPARISON IN DECODING THE (63, 47) RS CODE

Their discrepancy comes from the fact that we only consider
the dominant terms in the analytical expressions. Table I also
shows that the LCC-BR algorithm yields a lower complexity
for high rate codes, which will be more welcome in practice.

Table II compares the complexity of the LCC-BR algorithm
with several existing Chase decoding algorithms. The (63, 47)
RS code was used. Note that all Chase decoding algorithms
employ the same test-vectors formulation. Both the LCC [30]
and the BF-LCC [31] algorithms employ Kötter’s interpola-
tion. It can be seen that the complexity of all algorithms
have the same magnitude, where the LCC-BR algorithm has a
lower complexity than the BF-LCC algorithm. By eliminating
the redundant BR computation of the ACD-MM algorithm,
the proposed LCC-BR algorithm yields a lower complex-
ity. It can also be seen that the LCC-BR algorithm has a
slightly higher complexity than the LCC algorithm. Despite
the BR interpolation is less complex than Kötter’s interpo-
lation, the LCC algorithm performs the interpolation of all
test-vectors in a binary-tree growing fashion, granting it a
low-complexity feature. However, the LCC-BR algorithm has
a significant advantage in decoding latency, which is shown
below.

Since the LCC-BR algorithm can perform its individual
basis construction and root-finding in parallel, the re-encoding
transform and the common basis construction dominate the
running time. Therefore, its decoding latency does not vary
remarkably with different η values and it will be defined
by that of decoding a single test-vector. Lemmas 4 and 5
show that high rate codes have a lower LCC-BR decoding
complexity. Table III shows the complexity and latency (in
ms) in decoding two RS codes defined over F256. These results
were obtained by simulating the algorithms in C based on the
Intel core i5-4260U CPU and the macOS mojave operating
platform. For the rate half (255, 127) RS code, the LCC and
the BF-LCC algorithms yield a lower complexity than the
LCC-BR algorithm. The situation reverses in decoding the
(255, 239) RS code. In contrast to the LCC-BR algorithm,
running time of the LCC and the BF-LCC algorithms increase
as the η value enlarges. The LCC-BR algorithm maintains a
rather stable latency thanks to its parallel decoding feature.
Table III also shows that the LCC-BR decoding latency of the
(255, 239) RS code is smaller than that of the (255, 127)
RS code, validating its effectiveness for high rate codes.
In comparison with the LCC and the BF-LCC algorithms,
the LCC-BR algorithm shows its advantage on the decoding
latency. Its complexity advantage also emerges for high rate
codes. This again demonstrates the proposal’s practical merit.

B. The Progressive LCC-BR Algorithm

In order to show more insights of the channel dependent
feature of the progressive LCC-BR algorithm, we measure the

Fig. 3. Average number of decoded test-vectors in the progressive decoding.

average decoding complexity over multiple decoding events
at a certain SNR. Let Navg denote the average number of
the decoded test-vectors in each decoding event, the average
complexity of the progressive decoding will be CProg. = Cre +
Ccom + Navg

2η (Cind + Crf). When all decoding events are termi-
nated without producing an ML codeword, i.e., Navg = 2η,
CProg. = CLCC-BR. Therefore, the complexity advantage of the
progressive decoding will become obvious when the channel
condition improves, so that the decoding can be terminated
earlier.

Fig. 3 shows the statistics of Navg in decoding various
RS codes. The results were obtained by running 10 000 decod-
ing events at each SNR over the additive white Gaussian
noise (AWGN) channel using BPSK. As the SNR increases,
fewer test-vectors are decoded, leading to a lower complexity.
With a sufficiently high SNR, most of the decoding events are
terminated with decoding one test-vector, i.e., Navg = 1. The
progressive LCC-BR complexity converges to the minimum
level that is characterized by performing the MM based
GS algorithm.

Table IV further shows the average complexity in decoding
the (63, 47) RS code. For this code, complexity of the BM
and the GMD algorithms are 2.42 × 103 and 2.60 × 104,
respectively. It can be seen that complexity of the progressive
LCC-BR algorithm decreases as the SNR increases. When the
SNR is sufficiently large, e.g., SNR ≥ 6 dB, the progressive
LCC-BR complexity converges to the minimum level that has
the same magnitude as the BM complexity. This convergence
also echoes the results of Fig. 3. Compared with Table II,
the progressive LCC-BR algorithm yields a lower complexity
than the LCC-BR algorithm over the whole spectrum of SNR
due to its early termination feature.

VII. DECODING PERFORMANCE

This section shows the decoding performance of the pro-
posed algorithms. They are measured as the frame error
rate (FER) obtained over the AWGN channel using BPSK.
Note that KV-MM and ReT-KV-MM refer to the KV algorithm
and its re-encoding transformed variant whose interpolation
are realized by the basis reduction approach, respectively.
The Berlekamp [1], Massey [2], and the Guruswami and

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



6020 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 10, OCTOBER 2020

TABLE III

COMPLEXITY AND LATENCY (MS) COMPARISONS BETWEEN THE LCC, THE BF-LCC AND THE LCC-BR ALGORITHMS

TABLE IV

AVERAGE COMPLEXITY OF THE PROGRESSIVE ALGORITHMS IN DECODING THE (63, 47) RS CODE

Fig. 4. Performance of the (63, 47) RS code over the AWGN channel
using BPSK.

Sudan [7] and the generalized minimum-distance decoding [5]
algorithms are denoted as the BM, GS and GMD algorithms,
respectively.

Fig. 4 shows performance of the (63, 47) RS code. Note that
with the same η, the four Chase decoding algorithms, includ-
ing the LCC, the BF-LCC, the ACD-MM and the LCC-BR
algorithms, yield the same performance. This is because they
decode the same test-vectors. As η increases, the LCC-BR
performance can be improved since more test-vectors are
decoded. When η = 10, the LCC-BR algorithm outperforms
the BM and the GMD algorithms with 1.1 dB and 0.7 dB
coding gains at the FER of 10−4, respectively. It should be
pointed out that with the same η, the progressive LCC-BR
algorithm maintains the decoding performance of the
LCC-BR algorithm. This is evidenced by the progressive
LCC-BR performance with η = 6. Revisiting the complexity

results of Tables II and IV, we also know that the progressive
LCC-BR complexity is lower than the LCC-BR complexity.
Fig. 4 also shows performance of the KV-MM algorithm
with a maximum decoding output list size of four and eight,
i.e., l = degy Q(x, y) = 4 and l = 8. With the same
decoding parameter, the progressive KV-MM [29] and the
progressive ReT-KV-MM algorithms [40] achieve the same
decoding performance as the KV-MM algorithm. It can be seen
that the LCC-BR algorithm with η = 4 and η = 6 outperforms
the KV-MM algorithm with l = 4 and l = 8, respec-
tively, demonstrating the proposals’ competent error-correction
feature. In terms of decoding complexity, the worst-case
complexity of the progressive LCC-BR and the progressive
KV-MM algorithms are O(2η(n−k)2) and O(l5n(n−k)) [29],
respectively. When the SNR is small, the progressive algo-
rithms require a large decoding parameter with the preset η
or l being approached. In that case, Table IV shows that the
progressive LCC-BR algorithm will exhibit a lower decoding
complexity than the progressive KV-MM algorithm. When the
SNR is sufficiently large, the three progressive algorithms will
decode the message with the smallest parameter. Their com-
plexity will converge to the minimum level. Table IV shows
that the progressive LCC-BR and the progressive ReT-KV-MM
algorithms converge to a similar complexity level that is
characterized by performing the re-encoding transform based
GS algorithm with m = 1. They yield a lower converging
level than the progressive KV-MM algorithm, thanks to the
effectiveness of the re-encoding transform.

Finally, Fig. 5 shows the decoding performance of the popu-
lar (255, 239) RS code. The LCC-BR performance improves as
η increases and approaches the GMD algorithm when η = 2.
Compared with the BM algorithm, the LCC-BR algorithm
with η = 10 yields the performance gains of 0.8 dB at the FER

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: LCC DECODING OF RS CODES USING MODULE 6021

Fig. 5. Performance of the (255, 239) RS code over the AWGN channel
using BPSK.

of 10−4. Fig. 5 also shows that the KV-MM algorithm with
l = 4 has a similar performance as the LCC-BR algorithm
with η = 3. For this code, complexity of the ReT-KV-MM
and the LCC-BR algorithms are 4.70 × 106 and 4.27 × 105,
respectively. This again reveals the complexity advantage of
the proposed LCC-BR algorithm.

VIII. CONCLUSION

This paper has proposed the BR interpolation based LCC
algorithm for RS codes. Based on η unreliable symbols,
2η test-vectors are formulated. The LCC-BR algorithm first
constructs a common basis which is shared by the parallel
decoding of 2η test-vectors. It removes the redundant com-
putation in the BR interpolation and yields a low decoding
latency. The progressive LCC-BR algorithm has been further
proposed to adjust the decoding computation to the quality
of received information. By exploiting the difference between
the adjacent test-vectors, this progressive decoding has been
realized without additional memory cost. Complexity analy-
sis has shown that the LCC-BR algorithm exhibits a lower
decoding complexity and latency for high rate codes, which
has been validated by the numerical results. Simulation results
have shown the complexity and latency advantages of the
proposed algorithms over the existing algorithms. The current
work is limited in the interpolation multiplicity, trading the
error-correction capability of each Chase decoding event for
a lower basis construction complexity. Generalizing the pro-
posed mechanism for larger multiplicities will be considered
in future.

REFERENCES

[1] E. Berlekamp, Algebraic Coding Theory. New York, NY, USA:
McGraw-Hill, 1968.

[2] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. IT-15, no. 1, pp. 122–127, Jan. 1969.

[3] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding goppa codes,” Inf. Control, vol. 27,
no. 1, pp. 87–99, Jan. 1975.

[4] L. Welch and E. Berlekamp, “Error correction for algebraic block codes,”
U.S. Patent 4 633 470, Dec. 30, 1986.

[5] G. Forney, “Generalized minimum distance decoding,” IEEE Trans. Inf.
Theory, vol. IT-12, no. 2, pp. 125–131, Apr. 1966.

[6] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inf. Theory, vol. IT-18, no. 1,
pp. 170–182, Jan. 1972.

[7] V. Guruswami and M. Sudan, “Improved decoding of Reed–Solomon
and algebraic-geometric codes,” IEEE Trans. Inf. Theory, vol. 45, no. 1,
pp. 1757–1767, Mar. 1999.

[8] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of
Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11,
pp. 2809–2825, Nov. 2003.

[9] R. Kötter, “On algebraic decoding of algebraic-geometric and cyclic
codes,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Linköping,
Linköping, Sweden, 1996.

[10] H. O’Keeffe and P. Fitzpatrick, “Gröbner basis solutions of constrained
interpolation problems,” Linear Algebra Appl., vol. 351, pp. 533–551,
Aug. 2002.

[11] D. Lazard, “Ideal bases and primary decomposition: Case of two
variables,” J. Symbolic Comput., vol. 1, no. 3, pp. 261–270, Sep. 1985.

[12] K. Lee and M. O’Sullivan, “List decoding of Reed–Solomon codes
from a Gröbner basis perspective,” J. Symb. Comput., vol. 43, no. 9,
pp. 645–658, Sep. 2008.

[13] K. Lee and M. O’Sullivan, “An interpolation algorithm using Gröbner
bases for soft-decision decoding of Reed–Solomon codes,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Seattle, WA, USA, Jul. 2006,
pp. 2032–2036.

[14] T. Mulders and A. Storjohann, “On lattice reduction for polynomial
matrices,” J. Symbolic Comput., vol. 35, no. 4, pp. 377–401, Apr. 2003.

[15] M. Alekhnovich, “Linear diophantine equations over polynomials and
soft decoding of Reed–Solomon codes,” IEEE Trans. Inf. Theory,
vol. 51, no. 7, pp. 2257–2265, Jul. 2005.

[16] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard, “Computing
minimal interpolation bases,” J. Symbolic Comput., vol. 83, pp. 272–314,
Nov. 2017.

[17] F. Gustavson and D. Yun, “Fast algorithms for rational Hermite approx-
imation and solution of toeplitz systems,” IEEE Trans. Circuits Syst.,
vol. CS-26, no. 9, pp. 750–755, Sep. 1979.

[18] B. Beckermann, “A reliable method for computing M-Padé approxi-
mants on arbitrary staircases,” J. Comput. Appl. Math., vol. 40, no. 1,
pp. 19–42, Jun. 1992.

[19] B. Beckermann and G. Labahn, “Fraction-free computation of matrix
rational interpolants and matrix GCDs,” J. Matrix Anal. Appl., vol. 22,
no. 1, pp. 114–144, May 2000.

[20] V. Olshevsky and M. A. Shokrollahi, “A displacement approach to
efficient decoding of algebraic-geometric codes,” in Proc. ACM Symp.
Theory Comput. (STOC), Atlanta, GA, USA, May 1999, pp. 235–244.

[21] A. Zeh, C. Gentner, and D. Augot, “An interpolation procedure for list
decoding Reed–Solomon codes based on generalized key equations,”
IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 5946–5959, Sep. 2011.

[22] M. F. I. Chowdhury, C.-P. Jeannerod, V. Neiger, E. Schost, and
G. Villard, “Faster algorithms for multivariate interpolation with mul-
tiplicities and simultaneous polynomial approximations,” IEEE Trans.
Inf. Theory, vol. 61, no. 5, pp. 2370–2387, May 2015.

[23] R. Koetter and A. Vardy, “A complexity reducing transformation in
algebraic list decoding of Reed–Solomon codes,” in Proc. IEEE Inf.
Theory Workshop (ITW), Paris, France, Apr. 2003, pp. 10–13.

[24] R. Koetter, J. Ma, and A. Vardy, “The re-encoding transformation
in algebraic list-decoding of Reed–Solomon codes,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 633–647, Feb. 2011.

[25] J. Ma and A. Vardy, “A complexity reducing transformation for the
Lee-O’Sullivan interpolation algorithm,” in Proc. IEEE Int. Symp. Inf.
Theory, Nice, France, Jun. 2007, pp. 1986–1990.

[26] J. Xing, L. Chen, and M. Bossert, “Low-complexity Kotter-Vardy
decoding of Reed–Solomon codes using module minimization,” in Proc.
IEEE Int. Conf. Commun. (ICC), Shanghai, China, May 2019, pp. 1–6.

[27] L. Chen, S. Tang, and X. Ma, “Progressive algebraic soft-decision
decoding of Reed–Solomon codes,” IEEE Trans. Commun., vol. 61,
no. 2, pp. 433–442, Feb. 2013.

[28] J. Nielsen and A. Zeh, “Multi-trial Guruswami–Sudan decoding for
generalised Reed–Solomon codes,” Des., Codes Cryptogr., pp. 507–527,
Feb. 2014.

[29] J. Xing, L. Chen, and M. Bossert, “Progressive algebraic soft-decision
decoding of Reed–Solomon codes using module minimization,” IEEE
Trans. Commun., vol. 67, no. 11, pp. 7379–7391, Nov. 2019.

[30] J. Bellorado and A. Kavčić, “Low-complexity soft-decoding algo-
rithms for Reed–Solomon codes—Part I: An algebraic soft-in hard-out
chase decoder,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 945–959,
Mar. 2010.

[31] X. Zhang and Y. Zheng, “Generalized backward interpolation for
algebraic soft-decision decoding of Reed–Solomon codes,” IEEE Trans.
Commun., vol. 61, no. 1, pp. 13–23, Jan. 2013.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



6022 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 10, OCTOBER 2020

[32] J. Zhao, L. Chen, X. Ma, and M. Johnston, “Progressive algebraic chase
decoding algorithms for Reed–Solomon codes,” IET Commun., vol. 10,
no. 12, pp. 1416–1427, 2016.

[33] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An efficient
maximum-likelihood-decoding algorithm for linear block codes with
algebraic decoder,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 320–327,
Mar. 1994.

[34] L. Chen and M. Bossert, “Algebraic chase decoding of Reed–Solomon
codes using module minimisation,” in Proc. Int. Symp. Inf. Theory App.
(ISITA), Monterey, CA, USA, Oct. 2016, pp. 305–309.

[35] H. Hasse, “Theorie der höheren Differentiale in einem algebraischen
Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger
Charakteristik,” J. Reine. Angewandte Math., vol. 175, pp. 50–54, 1936.

[36] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed–Solomon
codes beyond half the minimum distance,” IEEE Trans. Inf. Theory,
vol. 46, no. 1, pp. 246–257, Jan. 2000.

[37] G. Forney, “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. IT-
11, no. 4, pp. 549–557, Oct. 1965.

[38] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, “Fast solution of
toeplitz systems of equations and computation of Padé approximants,”
J. Algorithms, vol. 1, no. 3, pp. 259–295, Sep. 1980.

[39] M. Bossert, Channel Coding for Telecommunications. Hoboken, NJ,
USA: Wiley, 1999.

[40] J. Xing, L. Chen, and M. Bossert, “Progressive module minimization
for re-encoding transformed soft decoding of RS codes,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1547–1551.

Jiongyue Xing (Graduate Student Member, IEEE)
received the B.Sc. degree in communication engi-
neering and the Ph.D. degree in information and
communication engineering from Sun Yat-sen Uni-
versity, Guangzhou, China, in 2015 and 2020,
respectively. From December 2018 to Decem-
ber 2019, he was a Visiting Ph.D. Student with
the Institute of Communication Engineering, Ulm
University, Germany. His research interests include
channel coding and data communications.

Li Chen (Senior Member, IEEE) received the B.Sc.
degree in applied physics from Jinan University,
China, in 2003, and the M.Sc. degree in com-
munications and signal processing and the Ph.D.
degree in communications engineering from New-
castle University, U.K., in 2004 and 2008, respec-
tively. From 2007 to 2010, he was a Research Asso-
ciate with Newcastle University. In 2010, he returned
to China as a Lecturer of the School of Information
Science and Technology, Sun Yat-sen University,
Guangzhou. From 2011 to 2012, he was a Visiting

Researcher with the Institute of Network Coding, The Chinese University of
Hong Kong. From 2011 and 2016, he was an Associate Professor and a Pro-
fessor of university. Since 2013, he has been the Associate Head of the Depart-
ment of Electronic and Communication Engineering (ECE). From July 2015 to
October 2015, he was a Visitor of the Institute of Communications Engineer-
ing, Ulm University, Germany. From October 2015 to June 2016, he was a
Visiting Associate Professor with the Department of Electrical Engineering,
University of Notre Dame, USA. From 2017 to 2020, he was the Deputy
Dean of the School of Electronics and Communication Engineering. His
research interests include information theory, error-correction codes, and
data communications. He likes reading and photography. He is a Senior
Member of the Chinese Institute of Electronics (CIE). He is a member
of the IEEE Information Theory Society Board of Governors Conference
Committee, the Chair of the IEEE Information Theory Society Guangzhou
Chapter, and a Committee Member of the CIE Information Theory Society.
He is currently serving as an Associate Editor for IEEE TRANSACTIONS ON

COMMUNICATIONS. He has been involved in organizing several international
conferences, including the 2018 IEEE Information Theory Workshop (ITW)
at Guangzhou, for which he was the General Co-Chair.

Martin Bossert (Fellow, IEEE) received the
Dipl.Ing. degree in electrical engineering from
the Karlsruhe Institute of Technology, Germany,
in 1981, and the Ph.D. degree from the Technical
University of Darmstadt, Germany, in 1987. After a
one-year DFG scholarship at Linköping University,
Sweden, he joined the AEG Mobile Communication,
where he was involved in the specification and devel-
opment of the GSM systems. Since 1993, he has
been a Professor with Ulm University, Germany,
where he is currently the Director of the Institute

of Communications Engineering. He is the author of several textbooks and
coauthor of more than 200 articles. His research interest includes reliable and
secure data transmission. His main focus is on decoding of algebraic codes
with reliability information and coded modulation. He has been a member
of the IEEE Information Theory Society Board of Governors from 2010 to
2012 and has been appointed as a member of the German National Academy
of Sciences Leopoldina in 2013. Among other awards and honors, he received
the Vodafone Innovationspreis in 2007.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 16,2022 at 07:40:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


